Leapfrogging, Cannibalization, and Survival During Disruptive Technological Change: The Critical Role of Rate of Disengagement

Deepa Chandrasekaran, Gerard J. Tellis, and Gareth M. James

Abstract
When faced with new technologies, the incumbents’ dilemma is whether to embrace the new technology, stick with their old technology, or invest in both. The entrants’ dilemma is whether to target a niche and avoid incumbent reaction or target the mass market and incur the incumbent’s wrath. The solution is knowing to what extent the new technology cannibalizes the old one or whether both technologies may exist in tandem. The authors develop a generalized model of the diffusion of successive technologies, which allows for the rate of disengagement from the old technology to differ from the rate of adoption of the new. A low rate of disengagement indicates people hold both technologies (coexistence), whereas a high rate of disengagement indicates they let go of the old technology in favor of the new (cannibalization). The authors test the validity of the model using a simulation of individual-level data. They apply the model to 660 technology pairs and triplets–country combinations from 108 countries spanning 70 years. Data include both penetration and sales plus important case studies. The model helps managers estimate evolving proportions of segments that play different roles in the competition between technologies and predict technological leapfrogging, cannibalization, and coexistence.

Keywords
cannibalization, disengagement, disruption, leapfrogging, new technologies, switching

Online supplement: https://doi.org/10.1177/0022242920967912

In July 2020, Tesla became the world’s most valuable automaker, surpassing Toyota in market value for the first time (Roberson 2020). But it was Toyota that in 1997 released the Prius, the world’s first mass-produced hybrid electric vehicle. In 2006, Tesla Motors, an upstart entrant, bet that the future of the automotive industry would be fully electric cars. They announced they would produce luxury electric sports cars that could go more than 200 miles on a single charge. Incumbents dismissed the effort as futile because of the high entry barriers for auto production, the high cost of producing in California, and the challenges of establishing charging stations. But Martin Eberhard, Tesla’s cofounder, noted in a blog in 2006, “a world of 100% hybrids is still 100% addicted to oil... Tesla Motors will remain focused on building the best electric cars for the foreseeable future. With each passing year, our driving range will get longer and the argument for plug-in hybrids will get weaker. To hell with gasoline” (Eberhard 2006).

In contrast, Toyota bet that hybrids would be the future. “The current capabilities of electric vehicles do not meet society’s needs, whether it may be the distance the cars can run, or the costs, or how it takes a long time to charge,” said Takeshi Uchiyamada, Toyota’s vice chairman, who had spearheaded the Prius hybrid in the 1990s (Kubota 2012). Toyota faced a hard choice: invest in hybrids, all-electrics, or both?

Globally, during times of potentially disruptive technological change, both industry incumbents and new entrants face difficult choices. For incumbents, the critical dilemma is whether to cannibalize their own successful offerings and introduce the new (successive) technology, survive with their old offerings, or invest in both. To address this dilemma, they need to know whether disruption is inevitable; that is, will the old technology...
Our model and analysis provide both substantive and modeling innovations. Our research provides a better strategic understanding of how, in many situations, old technologies may not necessarily die but survive when new, successive technologies are introduced. The major contributions and implications are the following: First, disruption, though frequent, is not inevitable even when the successive technology grows rapidly, as old technologies can coexist as partial substitutes of the new. Second, the generalized model of diffusion of successive technologies helps strategists and marketers account for this coexistence by allowing the rate of disengagement from the old technology to differ from the rate of adoption of the new. Third, the separately estimated rate of disengagement enables a superior fit to data on technological succession. Fourth, the model helps estimate cannibalization by new, successive technologies, as well as sizes of four critical segments, providing key signals about disruption. The coexistence of both technologies occurs when there is a large segment of dual users. In contrast, the size of the leapfroggers segment correlates with the growth of the new technology, and the size of switchers and opportunists correlates with cannibalization of the old technology. Fifth, the profit implications of leapfrogging and cannibalization may vary greatly depending on which firms market which technology. Major incumbents may fail during the takeoff of new technologies due to underestimating the size of leapfroggers (opportunity cost) and switchers (real cost). Sixth, the generalized model can capture variations in segment sizes across technologies and global markets. The next sections present the theory, new typology, model, empirical applications, and strategic implications.

Theory

The theory of disruptive change (Bower and Christensen 1995; Christensen 2013) suggests that a new technology enters a market, improves in performance, and then surpasses the performance of the existing technology. During times of such technological change, leading incumbent firms fail, not because they were technologically incapable of producing and marketing these innovations themselves, but because they focus on their existing (mainstream) customers, who were satisfied with the existing technology because it met their needs on the primary dimension of performance (Christensen 2013).

Christensen and his coauthors suggest that the new technology enters, survives, and grows because it offers benefits on a secondary dimension of performance that appeals to niche segment consumers. Over time, the new technology improves in performance and at some point meets the standards of the mainstream segment on the primary dimension of performance. These customers then switch to the new technology. Disruption occurs if the incumbent focuses on the old technology to the exclusion of the new one.

Several authors have criticized the theory of disruption because of circular definitions, lack of large empirical evidence or a predictive model, and a failure to examine whether consumer behavior changes (e.g., Muller 2020; Sood and Tellis...
However, no study has refuted the essential features of the theory of disruption: that successive technologies do compete, the competing technologies appeal to different segments, the new technology grows in performance over time, and the niche it serves grows in response to this improvement.

A major limitation of prior work on disruption is that it does not provide recommendations on some critical issues that concern both incumbents and new entrants: How can they estimate the extent of cannibalization over time and who are the customers most susceptible to the new technology? Could the two technologies coexist, and which segments drive the coexistence of both technologies and the growth of the new technology? This research seeks to address these issues.

Definitions and a Typology of New Adopter Segments for Successive Technologies

To answer the previous questions using the theory of disruption, we define the concepts of successive technology, substitution, and segments.

Table 1. A Comparison with Related Literature on Generational Substitution.

<table>
<thead>
<tr>
<th>Article</th>
<th>Key Question</th>
<th>Data</th>
<th>Partial Disengagement?</th>
<th>Leapfrogging Considered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>This article</td>
<td>To examine the diffusion of successive technologies while accounting for coexistence, cannibalization, and leapfrogging.</td>
<td>Multicountry penetration and sales data across several countries for technology pairs and triplets; case studies; simulation</td>
<td>Yes</td>
<td>Yes (four adopter segments considered)</td>
</tr>
<tr>
<td>Koh et al. (2019)</td>
<td>To quantify generational substitution, unbundling, and piracy effects.</td>
<td>Downloadable music; CDs; streaming</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Shi et al. (2014)</td>
<td>To incorporate consumers’ forward-looking behavior in multigenerational models.</td>
<td>Eight products across four firms</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Lam and Shankar (2014)</td>
<td>What drives mobile device brand loyalty?</td>
<td>Survey data on attitudes toward mobile phone brands spanning two generations: 2.5 G versus 3G</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Jiang and Jain (2012)</td>
<td>To develop an extension of the Norton–Bass model to separate adopters who substitute an old product generation with a new generation into those who adopted the earlier generation and those who did not.</td>
<td>Two generations of one category in one country; Three generations of one category in one country</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Streimersch et al. (2010)</td>
<td>To test whether growth acceleration occurs across multiple product generations.</td>
<td>39 technology generations in 12 product markets</td>
<td>No</td>
<td>Assumes no leapfrogging</td>
</tr>
<tr>
<td>Goldenberg and Oreg (2007)</td>
<td>To redefine the laggards concept and link it to the leapfrogging effect.</td>
<td>54 products (not specifically successive generations)</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>Danaher et al. (2001)</td>
<td>To incorporate marketing mix variables in the diffusion of multigeneration products.</td>
<td>Two generations of one category in one country</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Kim et al. (2000)</td>
<td>To develop a model able to incorporate both interproduct category and technological substitution effects simultaneously.</td>
<td>One technology market in two countries</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Jun and Park (1999)</td>
<td>To propose a model that incorporates diffusion and choice effects to capture diffusion and substitution for multiple generations of products.</td>
<td>Successive generations of two technology categories, not multicountry</td>
<td>No</td>
<td>Not specifically</td>
</tr>
<tr>
<td>Mahajan and Muller (1996)</td>
<td>To develop a model that accounts for diffusion and substitution for successive generations of technological innovations.</td>
<td>Successive generations of one technology category</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Norton and Bass (1987)</td>
<td>To develop a model that accounts for both diffusion and substitution for successive generations of high-tech products.</td>
<td>Successive generations of one technology category</td>
<td>No</td>
<td>N/A</td>
</tr>
</tbody>
</table>
A new successive technology (which can include both a technology and a product) addresses similar underlying consumer needs as the old technology (e.g., DVR vs. VCR) or may tap simultaneously into multiple needs (e.g., PC, laptop, tablet). Successive technologies do not include new generations of the same product. Note that in this article, we use the term “successive technology” synonymously with “new technology” and the term “old technology” synonymously with “prior technology,” given the context of technological succession. “Cannibalization” is the extent to which the successive technology “eats” into real or potential sales (or penetration) of the old technology due to substitution.

Successive technology. A new successive technology (which can include both a technology and a product) may be only partial substitutes. That is, whereas some consumers prefer the successive technology over the old technology (e.g., teens), other consumers may find value in and prefer to hold both (e.g., homeowners who have PCs, laptops, and tablets or keep both mobile phones and landlines). For example, while the two technologies may differ in terms of the scientific principle, the old technology may still serve a need that the successive technology cannot fulfill. In such a case, a group of adopters could choose to hold both technologies, triggering the need for a model that does not force complete substitution. In this case, consumers do not fully disengage from the old technology and may co-own successive technologies.

Rate of disengagement (F₁₂). Much research in marketing (e.g., Danaher, Hardie, and Putsis 2001; Guo and Chen 2018; Mahajan and Muller 1996; Norton and Bass 1987; Table 1) addresses the related issue of the diffusion of perfectly substitutable successive generations of the same technology (e.g., iPhone 8 vs. iPhone 7), in which the consumer always prefers the new generation to the old at the same price (e.g., iPhone 9 and 10). Thus, successive generations of the same technology exhibit perfect substitution. Here, consumers completely disengage from the old generation (of the same product) when they adopt the new one.

Technological competition is more complex than inter-generational competition because successive technologies may be only partial substitutes. That is, whereas some consumers prefer the successive technology over the old technology (e.g., teens), other consumers may find value in and prefer to hold both (e.g., homeowners who have PCs, laptops, and tablets or keep both mobile phones and landlines). For example, while the two technologies may differ in terms of the scientific principle, the old technology may still serve a need that the successive technology cannot fulfill. In such a case, a group of adopters could choose to hold both technologies, triggering the need for a model that does not force complete substitution. In this case, consumers do not fully disengage from the old technology and may co-own successive technologies.

For example, consider Figure 1a, which plots the penetration of VCRs and the successive technology of DVD players. Here we observe a fast adoption of DVD players, but over this same period, the decline in VCRs (Technology 1) is relatively small. In other words, a number of customers initially held on to both technologies before switching entirely to DVD players. Figure 1a also shows other such examples of the coexistence of successive technologies. Figure 1b shows a similar initial coexistence in sales of technology pairs. Therefore, to model the diffusion of successive technologies, one needs to allow for a rate of disengagement from the preceding technology that is not exactly equal to the rate of adoption of the new technology (i.e., one must allow for partial substitution). This inclusion of a
separate rate of disengagement (F_{12} in this article) is one of the innovations we propose in this research. A low rate of disengagement indicates consumers hold on to both technologies, whereas a high rate indicates they discard the old technology in favor of the new. Thus, the greater the rate of disengagement, the greater the cannibalization of the old technology by the new technology.\footnote{Disengagement relates to technological substitution and can be distinguished from churn, which refers to brand switching (e.g., VHS vs. DVD), even in the presence of the new. Thus, it makes sense to hang on to the old technology because it is still useful (e.g., VHS vs. DVD), even in the presence of the new. Currently, no model allows for this coexistence of successive technologies. However, multigenerational models such as Norton and Bass (1987) and Jiang and Jain (2012) model the diffusion of successive generations of the same technology. Although the Norton and Bass (1987) model is not right for multitechnology substitution, a modification of the Norton–Bass model is well-suited for this context. Our proposed model uses the multigenerational model of Norton and Bass (1987) as a starting point and extends this model to consider the context of the adoption of successive technologies that do not fully cannibalize each other (partial substitution). The major difference in our model is that we include a rate of disengagement from the old technology that does not equal the rate of adoption of the successive technology, which accounts for partial substitution in the case of successive technologies versus complete substitution in the case of successive generations of the same technology.}

Adopter segments for a new successive technology. We define and derive mathematically a typology of four adopter segments for successive technologies: (1) “Leapfroggers” adopt the successive technology but would never have adopted the old technology and thus present a new consumer segment for the new technology. This is the niche in Christensen’s theory of disruption that provides initial sales for the new technology. (2) “Switchers” are consumers who had already adopted the older technology but who choose to replace it with the successive technology after the latter technology is introduced. In Christensen’s theory of disruption, this is the mainstream consumer segment that switches to the successive technology after it improves. The refinement in our empirics is that this segment switches continuously to the successive technology as it improves. Each year, customers switch as the successive technology matches their needs better than the old technology. (3) “Opportunists” are those who would have adopted the old technology but delayed the decision and instead end up adopting the successive technology. (4) “Dual users” are those who had already adopted the older technology but who elect to adopt/use both technologies once the successive technology is introduced. This segment also includes those who would have adopted the old technology but had delayed the decision and ended up adopting and using both technologies.

A Generalized Model of the Diffusion of Successive Technologies

Many situations exist in which one technology substitutes for another but the substitution is only partial, either due to incomplete compatibility or because the old technology still has its uses. Thus, it makes sense to hang on to the old technology because it is still useful (e.g., VHS vs. DVD), even in the presence of the new. Currently, no model allows for this coexistence of successive technologies. However, multigenerational models such as Norton and Bass (1987) and Jiang and Jain (2012) model the diffusion of successive generations of the same technology. Although the Norton and Bass (1987) model is not right for multitechnology substitution, a modification of the Norton–Bass model is well-suited for this context.

Our proposed model uses the multigenerational model of Norton and Bass (1987) as a starting point and extends this
model assumes that the long-run penetration for Technology 2 will equal \(m_1 + m_2 \). The parameters \(p_1 \) and \(p_2 \) are the coefficients of innovation for Technologies 1 and 2, respectively, and \(q_1 \) and \(q_2 \) are the coefficients of imitation for Technologies 1 and 2, respectively. \(p_{12} \) and \(q_{12} \) can then be thought of as the coefficients of disengagement. Thus, \(F_1 \) describes the rate at which customers adopt Technology 1 prior to the introduction of Technology 2, and \(F_2 \) models the rate of adoption of Technology 2 after its introduction. Finally, \(F_{12} \) models the rate at which Technology 1 customers disengage upon the introduction of Technology 2.

Note that we make two critical departures in this specification from what is typical of multigenerational diffusion models. Typically, multigenerational diffusion models restrict \(F_2 \) to equal \(F_{12} \). The proposed model removes such a restriction for the context of successive technologies. The potential advantage of modeling \(F_2 \) and \(F_{12} \) separately is as follows: when \(F_2 = F_{12} \), the rate of disengagement by current Technology 1 customers exactly matches the rate of adoption by Technology 2 customers. However, in the case of successive technologies, across categories and countries, consumers may in fact hold both technologies simultaneously. For example, many families with older members have both a landline and a mobile phone. In addition, both technologies may grow simultaneously in different customer segments. Therefore, one of our innovations in developing a corresponding model to fit the context of successive technologies is to allow \(F_{12} \) to be less than \(F_2 \), which corresponds to people adopting Technology 2 at a faster rate than they leave Technology 1. If \(F_{12} = 0 \), then there is no substitution effect and people are holding on to both technologies. When \(F_{12} \) is large, there is a large substitution effect. This is a strength of the model because we can directly measure the substitution effect rather than forcing \(F_2 \) to equal \(F_{12} \).

Second, an important distinction from prior models is that we also do not constrain \(p_1 \) to equal \(p_2 \) or \(q_1 \) to equal \(q_2 \), a constraint that is suitable when the changes between the two generations are incremental, as in multigenerational diffusion, but not when the technology is discontinuous (Mahajan and Muller 1996), as in our more general case of successive technologies. Given that each successive new technology provides a substantial improvement in benefits, we expect the diffusion parameters \(p \) and \(q \) to vary for each new technology in a pair or triplet. Thus, our model does not constrain \(p_1 \) to equal \(p_2 \) or \(q_1 \) to equal \(q_2 \).

Note that, similar to previous models, we make certain assumptions. First, we assume a pure Bass model formulation for the first technology (Bass 1969). However, we acknowledge that the first technology may have been affected by a previous technology. Second, we model \(F_{12} \) using the same functional form as \(F_1 \) and \(F_2 \) for two reasons. Empirically, we find that the model with this form fits our data well. In addition, by modeling \(F_{12} \) using the same functional form as \(F_2 \), our approach reduces to the standard Norton and Bass (1987) and Jiang and Jain (2012) formulations whenever \(F_{12} = F_2 \). Thus, we provide a strict generalization of previous models. Overall, however, our model is a generalized model that can apply to both generational diffusion and technology diffusion.

Model Estimation

Let \(S_{ig} \) represent the observed yearly penetration of Technology \(g \) at time \(t_i \). Then, estimating the eight parameters in Equations 1, 2, and 3 can be achieved using nonlinear least squares. In particular, we select \(m_1, m_2, p_1, p_2, p_{12}, q_1, q_2, \) and \(q_{12} \) as the values that minimize

\[
\sum_{i=1}^{n} \left(S_{i1} - m_1 F_1(t_i) \left(1 - F_{12}(t_i - \tau_2 + 1) \right) \right)^2 \\
+ \sum_{i=1}^{n} \left(S_{i2} - F_2(t_i - \tau_2 + 1) \left(m_2 + m_1 F_1(t_i) \right) \right)^2,
\]

where \(n \) represents the number of years of observation. We minimize Equation 4 using the NLS function in the statistical software package R. Once the parameters have been estimated, it is a simple matter to plug the estimates back into Equations 1 and 2 to predict future penetration for Technologies 1 and 2.

Computing Segments of Adopters for the New Successive Technology

Next, we decompose penetration of Technology 2 into the four major segments defined earlier. Switchers (SW) and opportunists (O) represent a lost market for Technology 1 and thus its cannibalization (CAN), whereas leapfroggers (L) and dual users (DU) represent market growth (MG). Therefore, \(S_2(t) \) comprises the sum of these segments as such:

\[
S_2(t) = MG_2(t) + CAN_2(t) \\
= L_2(t) + DU_2(t) + SW_2(t) + O_2(t).
\]

Similarly, \(S_1(t) \) comprises the initial market for this technology (L1) less cannibalization from Technology 2 as such:

\[
S_1(t) = L_1(t) - CAN_2(t) = L_1(t) - \left(SW_2(t) + O_2(t) \right).
\]

We derive the various consumer segments as follows:

\[
L_1(t) = m_1 F_1(t), \quad L_2(t) = m_2 F_2(t - \tau_2 + 1) \\
SW_2(t) = m_1 \sum_{\theta = \tau_2}^{t} F_1(\theta - 1) \\
\left(F_{12}(\theta - \tau_2 + 1) - F_{12}(\theta - \tau_2) \right).
\]
Model Benefits

The proposed model allows us to extract the sizes of the four adopter segments for each year and technology pair in each country using the defined equations. Our model has several additional desirable characteristics. First, the model parameters have natural interpretations. For example, \(F_g \) corresponds to the rate that individuals would adopt Technology \(g \) in the absence of any competing technologies, and \(F_{g-1,g} \) represents the rate that individuals disengage from Technology \(g-1 \) to adopt Technology \(g \). Second, by setting \(F_g = F_{g-1,g} = F_g \), our model reduces to that of Norton and Bass (1987) and Jiang and Jain (2012), so their model can be seen as a special but more restrictive version of our approach for this context. Our empirical results suggest that our model provides a significantly more accurate fit to the data on successive technologies. Third, market growth generated by a particular technology can be easily computed as the sum of leapfroggers and dual users, and cannibalization can be computed as the sum of switchers and opportunists. Fourth, we do not place any restrictions on the size of adopter segments. Thus, market growth can be positive or negative. The latter case occurs when the total market size actually declines with the introduction of a new technology, possibly indicating disruption by yet another technology. While not the norm, our empirical results suggest that market growth can at times be negative when a still newer technology emerges for which we do not have data.

Model Validation: Can the Model Recover Meaningful Structure from Individual Data?

One may ask what evidence we have that our model can correctly recover individual consumer segments given that we have only aggregate data. To validate our model for this purpose, we ran a series of simulation analyses following precedents in model simulation (Paulson, Luo, and James 2018; Tellis and Franses 2006). For our data generation process, we simulated the adoption of two technologies by a large group of individual customers. The simulation demonstrates a good fit with only ten years of data for Technology 1 (i.e., the model yields a reasonably good fit with only five years after Technology 2 enters the market) (Simulation Exercise 1). With more years of simulated data, the fits become even more accurate. Next, we show the robustness of the simulation analysis to the inclusion of a continuous heterogeneity distribution (Simulation Exercise 2) and the absence of some of the segments altogether (Simulation Exercise 3). These exercises provide more confidence that our model can uncover meaningful structure from the aggregate data even when the model assumptions do not hold exactly. Details are in Web Appendix W2.

Empirical Applications of the Model

This section covers applications of the model using data from different contexts.

\[
O_2(t) = m_1 \sum_{\theta = \tau_1}^{t} F_{12}(\theta - \tau_2 + 1) - \left(F_1(\theta) - F_1(\theta - 1) \right) \\
DU_2(t) = m_1 F_1(t) \tilde{F}_2(t - \tau_2 + 1),
\]
We examined the fit of the model using the market penetration of seven technology pairs (telephone–mobile phone, dial-up internet–broadband, black-and-white TV–color TV, VCR–DVD player/recorder, DVD player–Blu-ray player, personal computer–laptop, and laptop–tablet) spanning 105 countries (441 technology pair–country combinations). The data were compiled from several sources (Passport Euromonitor, Fast Facts Database, and the telecommunications database of the International Telecommunications Union).

Analysis of Cross-Country Penetration of Technology Pairs

We examined the fit of the model using the market penetration of seven technology pairs (telephone–mobile phone, dial-up internet–broadband, black-and-white TV–color TV, VCR–DVD player/recorder, DVD player–Blu-ray player, personal computer–laptop, and laptop–tablet) spanning 105 countries (441 technology pair–country combinations). The data were compiled from several sources (Passport Euromonitor, Fast Facts Database, and the telecommunications database of the International Telecommunications Union).

Model fit

Overall, the proposed model fits the data well. Table 2 presents comparisons of the penetration data for four technology pairs using both mean-squared and median-squared errors of our proposed model with the separately estimated disengagement rate compared to the reduced form model using the simplifying assumption \(F_2 = F_{12} \). Our proposed model gets much smaller error rates than the latter model.

Table 2 presents the results by old and new technology as well as the average error across both technologies for the four pairs (the subsample is displayed for brevity). We derived the mean errors in the “training,” or in-sample data, by excluding the last time point for each curve, fitting each of the two competing models to the remaining time points, and calculating the mean of squared errors between the observed and predicted points for each technology pair across countries. In contrast, we derived the “test,” or out-of-sample results, by excluding the last time point from each curve and fitting the models to the remaining time points (\(K = 1 \)). However, in this case, the mean squared error is calculated using the squared difference between the final year’s observed and predicted points and calculating the overall average error across countries for each technology pair. Overall, our model fits much better out of sample as well as in sample, which is the true test for better performance of our model. The median error rate refers to the in-sample and out-of-sample error rate across the different countries—using the median instead of the mean—to account for the fact that some countries may greatly influence the

2 The measurement unit is market penetration or the percentage of households owning a technology. Penetration refers to the number of adopters divided by the number of households or inhabitants (depending on the data available for each technology pair).
averages.\footnote{All the raw numbers for this analysis were standardized using the largest observed penetration level within each country to provide for a valid comparison across countries.} See Figure 2 for some illustrative fit plots. Web Appendix W3 presents an analysis for $K = 3$ and 5 years. Overall, this analysis indicates that our model, which allows $F_{12} < F_2$, still outperforms a model that allows $F_{12} = F_2$. Table 3 provides the mean parameter estimates for these technology pairs.

Our model allows us to decompose penetration for technology pairs into adopter segments. We provide an illustrative example for telephone–mobile phones in India. In Figure 3a, L_1 is the projected penetration of Technology 1 (telephone) if the successive technology (mobile phone) were absent. S_1 is...
the estimated penetration for Technology 1, indicating the effect of cannibalization (L1 – Cannibalization) due to switchers (SW) and opportunists (O). In Figure 3b, S2 (penetration for Technology 2 (mobile phone) is decomposed into leapfroggers (L2), total cannibalization (switchers (SW) + opportunists (O)), and dual users (DU). Here, the penetration of mobile phones is initially dominated by leapfroggers, followed by growth from cannibalization. In Figure 3c, S1 + S2 represents the evolution of the overall market due to market growth from Technology 2 (leapfroggers + dual users) compared to the presence of only Technology 1 (L1). Overall, the introduction of mobile phones in India created market expansion.

Are Adopters of Successive Technologies Similar Across Categories?

We next present some key results derived from decomposition of the data across the 441 technology pair–country combinations ten years from the commercialization of the new technology, using our model. Figure 4a presents the average size of the adopter segments across categories. Notice that for the transition from dial-up to broadband, on average across countries, switchers form the dominant category in terms of market penetration (8%), followed by leapfroggers (6%), rather than dual users. In terms of validity, these results make sense because most adopters are unlikely to hold both dial-up and broadband. In contrast, for landline telephones–mobile phone, dual users (24%) dominate on average across countries; in other words, most adopters were keen on holding both technologies ten years from the commercialization of the new technology.

Furthermore, on average, growth of Technology 2 derived from cannibalization of Technology 1 due to switchers and opportunists is greater than from market growth due to leapfroggers and dual users for the Blu-ray and broadband markets. In contrast, market growth is greater than cannibalization for the other technology pairs. Overall, the results indicate the size of adopter segments and the effects of leapfrogging and cannibalization vary across categories.

Table 3. Parameter Definitions and Estimates.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Interpretation</th>
<th>Laptop–Tablet</th>
<th>PC–Laptop</th>
<th>DVD–Blu-ray Player</th>
<th>VCR–DVD Player</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>Long-run penetration potential for Technology 1 if Technology 2 had never been introduced</td>
<td>76.65</td>
<td>54.49</td>
<td>81.69</td>
<td>30.62</td>
</tr>
<tr>
<td>m2</td>
<td>Additional market share for Technology 2 above that of Technology 1</td>
<td>20.60</td>
<td>24.83</td>
<td>11.06</td>
<td>17.61</td>
</tr>
<tr>
<td>p1</td>
<td>Coefficient of innovation for Technology 1</td>
<td>.004</td>
<td>.010</td>
<td>.002</td>
<td>.004</td>
</tr>
<tr>
<td>q1</td>
<td>Coefficient of imitation for Technology 1</td>
<td>.250</td>
<td>.056</td>
<td>.221</td>
<td>.061</td>
</tr>
<tr>
<td>p2</td>
<td>Coefficient of innovation for Technology 2</td>
<td>.006</td>
<td>.011</td>
<td>.007</td>
<td>.008</td>
</tr>
<tr>
<td>q2</td>
<td>Coefficient of imitation for Technology 2</td>
<td>.222</td>
<td>.109</td>
<td>.172</td>
<td>.071</td>
</tr>
<tr>
<td>p12</td>
<td>Coefficient of disengagement 1</td>
<td>.003</td>
<td>.013</td>
<td>.001</td>
<td>.002</td>
</tr>
<tr>
<td>q12</td>
<td>Coefficient of disengagement 2</td>
<td>.022</td>
<td>.056</td>
<td>.025</td>
<td>.049</td>
</tr>
<tr>
<td>N</td>
<td>Count</td>
<td>85</td>
<td>85</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

Are Adopter Segments Similar Across Countries?

Following marketing research discussing cross-country effects with multiple data sets (e.g., Ladron-de-Guevara and Putsis 2015; Putsis et al. 1997), we examine if adopter segments vary across countries. We classify countries in our data set into developing and developed countries. Specifically, we use the analytical classification provided by the World Bank and gathered from various historical reports, as income classifications are rigorous and contemporaneous. We term low and low-middle income countries as developing and middle and high-income countries as developed. We present the following results using data from 323 technology pair–country combinations in which we were able to identify the country income classification as of Year 10 from new technology commercialization. We identify 131 cases of high-income countries, 88 of upper-middle income, and 104 of low-income (includes low and low-middle income) countries.

The mean estimated penetration of Technology 2 ten years after the new successive technology commercialization is 18% for low-income countries and 23% for high-income countries. The mean estimated penetration of Technology 1 ten years after new technology commercialization is 24% for low-income countries and 49% for high-income countries. These estimates were very close to the actual penetration data for that year.

Overall, the mean for leapfroggers is significantly higher for low-income countries compared to both high-income countries (MeanL_{lowinc} = 7.04, MeanL_{highinc} = 2.61, t = 4.10, p = .0001, using a two-sample T-test with unequal variances) and upper-middle-income countries (MeanL_{uminc} = 4.21, t = 2.09, p = .038). The mean for dual users is significantly higher for high-income compared with low-income countries.

\footnote{Each year, the World Bank revises the analytical classification of the world’s economies on the basis of estimates of gross national income per capita for the previous year and classifies countries into low-income, lower-middle-income, upper-middle-income, and high-income countries.}
Thus, a key empirical generalization from our analysis is that developing countries exhibit a higher level of leapfrogging adoption than developed countries in the early life cycle of the successive technology, whereas developed countries exhibit a higher level of adoption by dual users than developing countries in the early life cycle of the successive technology (Figure 4b).

Overall, we find that adopter segments of successive technologies have some context-dependent variations, validating the need for a generalizable model that managers can use to understand the extent of cannibalization and/or market growth.

Analysis of Data on Cross-Country Sales of Technology Pairs

Next, we examine whether the model fits aggregate sales data. We use historical sales data (units in thousands) on three contemporary technology pairs (laptops–tablets, DVD players–Blu-ray players, and digital cameras–smartphones) from 40 countries, with 92 product–country combinations in total for the years 1990–2017 from the Euromonitor Passport database.

Fit statistics. Table 4 shows the fit statistics. Results indicate that our model with a separately estimated disengagement also fits sales data well. The mean parameter estimates across the 92 product–country combinations are $p_1 = .02$ (SD = .09), $t = 4.97$, $p < .0001$, and upper-middle-income countries (MeanDU$_{uminc} = 9.10$, $t = 3.12$, $p = .002$).

To determine early sales data more accurately in each country, we compared the earliest year of sales data with the corresponding penetration data from Euromonitor. Whenever penetration data started earlier, we used a simple proportion formula to calculate sales for earlier years.
q_1 = .54 (SD = .34), p_2 = .02 (SD = .03), q_2 = .29 (SD = .32), p_{12} = .09 (SD = .12) and q_{12} = .34 (SD = .33).

Case Analyses of Successive Technology Competitions in the United States

We next apply our model to the competition within contemporary, emerging technology pairs in the United States. The application leads to some preliminary generalizations: First, an increase in switchers over time is associated with the cannibalization of sales of Technology 1. Especially when switchers dominate dual users, this increase in switchers is associated with a sustained decline of sales of Technology 1, disrupting incumbents (Cases 1, 4, Web Appendix W4 Case WA1 on digital camera–smartphones). Second, an increase in dual users over time compared with switchers buys time for older technologies and enables them to grow despite the growth of new technologies (Case 2, Web Appendix W4 Case WA2 on VCRs–DVD players). Third, an increase in and dominance of leapfroggers over time is associated with the growth of Technology 2 (Cases 2, 3, Web Appendix W4 Case WA1). Incumbents underestimate or ignore these entirely new consumer segments. Christensen mentioned this, but we show how to estimate its size and evolution.

Case 1: Music CDs versus digital downloads. CDs were the dominant music format in 2004, and Apple iTunes’ music store had been offering legal digital music downloads since 2003. Although most music executives then believed that people would pay for legal online music, big record labels were slow in adopting digital downloads. Some industry analysts predicted that digital music would not replace CDs because either potential buyers would use it only to sample music before buying CDs or it would only be the terrain of teenagers using iPods (Emigh 2008). According to analyst expectations, digital downloads and CDs could be expected to grow in tandem. A pertinent question in 2004 was whether digital downloads would eventually cannibalize and disrupt music CDs or if both would in fact grow in tandem.

We analyzed data on sales (in millions of units) of music CDs (CDs and CD singles from 1983 to 2018) and digital downloads (including singles, music albums, and music videos from 2004 to 2018) from the Recording Industry Association of America. The analysis from our model (Figure 5a) suggests that switchers (red line) dominated other segments right from the beginning, and this segment grew over the years. Both dual users (orange line) and leapfroggers (green line) tapered off by Year 5. Thus, contrary to the analysts’ early expectations, our model indicates that the technologies did not coexist. The immediate high cannibalization by switchers was associated with and probably responsible for the relatively rapid decline of music CDs.

The decline of music CDs from 2005 caused both record labels and music retailers to suffer. About 800 music stores closed in 2006 alone (Smith 2007).

Case 2: Tablets versus laptops. While PCs and laptops were the dominant older technologies, the tablet, which was in the works for many years, took off with the introduction of the Apple iPad. At the D8 conference in 2010, when Walt Mossberg asked Steve Jobs whether he thought the tablet will replace the laptop, Jobs replied “PCs are going to be like trucks. They are still going to have a lot of value, but they are going to be used by one out of X people—Is the next step the iPad? Who knows? Will it happen next year or five years from now or seven years from now? Who knows? But I think we’re headed in that direction” (Paczkowski 2010). HP dominated the market for the older technologies, but in 2011, CEO Leo Apotheker wanted to get HP out of the PC business (Goldman 2011). “The tablet effect is real,” Apotheker is reported to have said on the call with analysts, “consumers are changing how they use PCs.” Apotheker was soon ousted, and the decision was reversed. A pertinent
question at this time was whether tablets would eventually cannibalize and disrupt sales of laptops (and PCs).

We analyzed U.S. sales data of laptops and tablets from Passport Euromonitor. Figure 5b shows that while leapfroggers (green line) were the dominant segment, switchers (red line) dominated dual users (orange line) in the first ten years, vindicating HP’s initial bleak assessment. However, soon after, dual users (using both technologies) dominated switchers. Our analysis indicates why tablets would not immediately disrupt the market for laptops. Apple gained by attracting dual users while also capturing an entirely new adopter segment base: leapfroggers.

Table 4. Comparison of Fit Statistics for Sales Data of Technology Pairs.

1. Laptop Versus Tablet Across Countries

<table>
<thead>
<tr>
<th>Mean Errors</th>
<th>Laptop</th>
<th>Tablet</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>.0067</td>
<td>.0114</td>
<td>.0090</td>
</tr>
<tr>
<td>Test</td>
<td>.0196</td>
<td>.1491</td>
<td>.0843</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Median Errors</th>
<th>Laptop</th>
<th>Tablet</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>.0036</td>
<td>.0116</td>
<td>.0068</td>
</tr>
<tr>
<td>Test</td>
<td>.0114</td>
<td>.1509</td>
<td>.0354</td>
</tr>
</tbody>
</table>

2. DVD Versus BD players Across Countries

<table>
<thead>
<tr>
<th>Mean Errors</th>
<th>DVD player</th>
<th>BD player</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>.0219</td>
<td>.0084</td>
<td>.0152</td>
</tr>
<tr>
<td>Test</td>
<td>.0294</td>
<td>.1165</td>
<td>.0730</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Median Errors</th>
<th>DVD player</th>
<th>BD player</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>.0199</td>
<td>.0070</td>
<td>.0115</td>
</tr>
<tr>
<td>Test</td>
<td>.0231</td>
<td>.1019</td>
<td>.0505</td>
</tr>
</tbody>
</table>

3. Digital Cameras Versus Smartphones Across Countries

<table>
<thead>
<tr>
<th>Mean Errors</th>
<th>Digital Cameras</th>
<th>Smartphones</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>.0010</td>
<td>.0063</td>
<td>.0036</td>
</tr>
<tr>
<td>Test</td>
<td>.0008</td>
<td>.0214</td>
<td>.0111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Median Errors</th>
<th>Digital Cameras</th>
<th>Smartphones</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>.0008</td>
<td>.0018</td>
<td>.0012</td>
</tr>
<tr>
<td>Test</td>
<td>.0001</td>
<td>.0050</td>
<td>.0014</td>
</tr>
</tbody>
</table>

Notes: This table represents the in-sample (training) and out-of-sample (test) error rates for sales data. The explanations are similar to those provided for Table 2. All the raw numbers for this analysis were standardized by the largest observed sales level by each country to provide for a valid comparison by countries. The median error rate refers to the in-sample and out-of-sample error rate across the different countries—using the median instead of the mean—to account for the fact that some countries may greatly influence the averages.
Hybrid electric vehicles are powered by an internal combustion engine in combination with one or more electric motors that use energy stored in batteries, combining the benefits of high fuel economy and low tailpipe emissions with the power and range of conventional vehicles. All-electric vehicles use a battery pack to store the electrical energy that powers the motor. All-electric vehicles are zero-emission vehicles because they produce no direct exhaust or emissions.

6 Hybrid electric vehicles are powered by an internal combustion engine in combination with one or more electric motors that use energy stored in batteries, combining the benefits of high fuel economy and low tailpipe emissions with the power and range of conventional vehicles. All-electric vehicles use a battery pack to store the electrical energy that powers the motor. All-electric vehicles are zero-emission vehicles because they produce no direct exhaust or emissions.

7 https://toddwschneider.com/dashboards/nyc-taxi-ridehailing-uber-lyft-data/
Second, the model enables a superior fit to aggregate penetration and sales data over prior multigenerational models that do not include such flexibility (i.e., they force F_{12} to equal F_2). Furthermore, an added benefit of the generalized model is that when the rate of disengagement from the old technology equals the rate of adoption of the new, it reduces to a model of multigenerational diffusion.

Third, we identify four adopter segments that account for competition between successive technologies from aggregate data: “leapfroggers” correlate with the growth of the new technology, “switchers” and “opportunists” account for the cannibalization of the old technology, and “dual users” account for the coexistence of both technologies.

Fourth, the generalized model can capture variations in segment sizes across technologies and markets. Leapfroggers form a dominant component of adopters in the early life cycle of a new technology in developing markets compared with other segments. Dual users form a dominant component of adopters in the early life cycle of a new technology in developed markets compared with other segments.

Strategic Implications

The major strategic implications of our findings are as follows: First, many established incumbents stumble or fail due to a takeoff of a new technology. Our model can provide important signals about disruption and survival by estimating cannibalization versus coexistence and forecasting the evolution of four critical consumer segments from aggregate data. Incumbents often wait until the market for the new technology is large enough to be profitable (Christensen 2013) before committing resources to its development. Our analysis suggests that senior managers of strategy and managers of new products should be careful not to underestimate cannibalization by switchers, especially when they dominate dual users, or growth of new technologies due to leapfroggers (especially in developing countries).

Second, despite its frequent occurrence, disruption is not a given when a new successive technology enters the market. Thus, managers do not have to make a stark choice between the two technologies. Disruption may be averted by effectively targeting dual users and by carefully examining factors driving the prolonged (co)existence of the old technology.

Third, the profit implications of leapfrogging and cannibalization vary depending on which firms market which technology. All segments represent a real gain for entrants, as the takeoff of the new technology is always a win. For the incumbent not introducing the successive technology (e.g., HP), the takeoff of that technology is always a loss. Particularly, if the incumbent firm markets the old technology and a new entrant markets the successive technology, then leapfrogging and switching represent a net loss to the incumbent and a net gain to the entrant. For the incumbent introducing the successive technology (e.g., Sony in DVD players), the takeoff of the successive technology is a win if competitors would have introduced it or if the successive technology has a higher margin than the old technology. Leapfroggers are an opportunity loss for incumbents, but switchers are a real loss to incumbents. If

![Figure 5b. Decomposition of laptop and tablet sales in the United States.](image-url)
Figure 5c. Prediction in the hybrid and electric car market in the United States.

Figure 5d. Decomposition of trips by yellow taxis and ride-sharing services.
the incumbent firm markets both technologies and if the margin on the new exceeds the margin on the old, then switching and leapfrogging represent a net gain to the incumbent. However, if multiple firms market each technology or if margins vary, then the rate of leapfrogging and cannibalization becomes critical to ascertain profitability given the costs.

Fourth, marketers may be able to develop forecasts on the basis of early sales or penetration data of the successive technologies, or from similar contexts, to understand how these various segments may grow (or shrink) over time. Such an understanding can help guide a firm’s managerial and economic resource allocation strategies across both technologies over time.

Table 5 summarizes the major strategic implications of this research.

<table>
<thead>
<tr>
<th>Adopter Segments</th>
<th>Market Outcome on the Introduction of Technology 2</th>
<th>Firm Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leapfroggers</td>
<td>Market growth of successive technology</td>
<td>Neutral</td>
</tr>
<tr>
<td>Opportunists</td>
<td>Cannibalization of old technology</td>
<td>Lose</td>
</tr>
<tr>
<td>Switchers</td>
<td>Cannibalization of old technology</td>
<td>Neutral/loss<sup>c</sup></td>
</tr>
<tr>
<td>Dual users</td>
<td>Market growth of both technologies</td>
<td>Neutral</td>
</tr>
</tbody>
</table>

^aAssumes that the incumbent (or incumbents) dominated the market for the old technology and entrants pioneered the new technology.

^bAssumes that the incumbent chooses to enter the new technology market rather than wait on the sidelines.

^cNeutral for adoption/lose if sales is considered.

The incumbent firm markets both technologies and if the margin on the new exceeds the margin on the old, then switching and leapfrogging represent a net gain to the incumbent. However, if multiple firms market each technology or if margins vary, then the rate of leapfrogging and cannibalization becomes critical to ascertain profitability given the costs.

Fourth, marketers may be able to develop forecasts on the basis of early sales or penetration data of the successive technologies, or from similar contexts, to understand how these various segments may grow (or shrink) over time. Such an understanding can help guide a firm’s managerial and economic resource allocation strategies across both technologies over time.

Table 5 summarizes the major strategic implications of this research.

Limitations and Future Directions

This study suffers from several limitations. First, we used aggregate data to test the model because they were abundantly available. As managers and researchers get access to richer, individual customer-level data, they may be able to provide better support to our modeling insights. Moreover, disaggregate choice models can be utilized to address issues such as cannibalization. However, macro diffusion models still have the ability to produce useful macro-level conclusions in ways that micro approaches sometimes cannot. Second, we consider a demand-based view of disruption in proposing the typology of adopter segments. Future research could complement these typologies and data sets with surveys to determine the characteristics of adopters of the new technology versus those who stay with the old technology, as well as what factors influence the size of adopter types. Third, an incumbent may respond to the new technology by making changes in variables such as price, and the omission of such control variables may violate some of the assumptions of the model. All these remain fruitful areas for future research.

Acknowledgments

The authors thank Federica Rossetti, Bilal Jahangir, Pongkhi Bujorbarua, Eric Yu, and Hei Man for their research assistance and participants at the AMA-EMAC Invitational Symposium and seminars at UTSA, UT Austin, Wharton, and Yale for their helpful comments on earlier versions.

Associate Editor

Peter Danaher

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study benefits from the Christian and Mary Lindback grant for minority and junior faculty, a grant from Don Murray to the Center for Global Innovation, Marshall School of Business, University of Southern California, and a research grant from the Institute on Asian Consumer Insight.

References

